
1

Issues in realizing an end-to-end 
embedded system tool-chain:
Experiences from the European IST 
projects “NEXT TTA” and “RISE”

Stavros Tripakis
VERIMAG

Joint work with: Paul Caspi, Adrian Curic, 
Aude Maignan, Christos Sofronis



2

Embedded systems

The computer

The rest of the world
(“environment”, “plant”, …)

sensors actuators



3

Embedded systems:
what’s new about them ?

• Is emacs an embedded system ?

• In a sense yes, but often there’s more:
– Cheap computers (low-speed, low-memory, low-

battery, …)
– Real-time environments (can’t wait)
– Safety critical, control applications
– Distributed, multiprocessor, networked, …



4

A point of view
• Embedded systems is an application domain.

• Requires harmonious contribution of many 
scientific domains:
– control
– verification
– scheduling
– programming/compilation
– OS and middleware
– architectures and hardware



5

A point of view
• Pushes these domains to reconsider their 

assumptions: 
– control:

• controllers under architecture/implementation constraints 
(communication delays, sampling, …)

– verification:
• heterogeneous semantics

– scheduling:
• variable CPU rate (for power savings), more complex 

environment models, …



6

A point of view
• Pushes these domains to reconsider their 

assumptions: 
– programming/compilation

• interfaces, RT extensions, “safety” features (e.g., 
exception handling), ...

– OS and middleware:
• micro-kernels, real-time guarantees, resource monitoring 

and management, ...
– architectures and hardware:

• power, fault-tolerance, ...



7

A point of view
• Introduces interdisciplinary problems: 

– implementation of controllers (control-theory and 
computer science)

– WCET (verification and hardware architectures)



8

A point of view
• Involves lots of politics: 

– fights for standards, ...



9

Our work

• In the context of European IST projects:
• “NEXT TTA” (2002-2003) and
• “RISE” (2003-2004).

• Automotive applications (partner: Audi).

• Other industrial partners:
– TTTech, Esterel Technologies, Austria 

Microsystems, ...



10

Execute

Design

Implement

Our view: a development process 
in three layers



11

Execute

Design

Implement

Our view: a development process 
in three layers, supported by:

Models

Programming
languages

OS, middleware,
HW architecture Automation is key!



12

OSEK OS + COM
MPC 555 + CAN bus

Simulink/Stateflow

C

A possible stack

• “control” stack:



13

OSEK OS + COM
MPC 555 + CAN bus

UML

C

Multiple stacks may be needed

• “software architecture” stack:



14

Multiple stacks may be needed

• The “integration problem”:



15

The integrated tool-chain

Tool-chain



16

OSEK OS + COM
MPC 555 + CAN bus

Simulink/Stateflow

C

The resource allocation problem

Ideal

Non-ideal



17

OSEK OS + COM
MPC 555 + CAN bus

Simulink/Stateflow

C

The resource allocation problem

• Can be solved at various levels:



18

OSEK OS + COM
MPC 555 + CAN bus

Simulink/Stateflow

C

The resource allocation problem

• Can be solved at various levels:



19

TTA

Simulink/Stateflow

Lustre/SCADE

Our work



20

TTA

Simulink/Stateflow

Lustre/SCADE

Our work

De-facto standard
in automotive

Semantics,
analysis, code
generation

Time-triggered, fault-tolerant
services, Audi likes it



21

The development process

1. Design your controller in 
Simulink/Stateflow.

2. Translate it to Lustre.
3. Verify the Lustre program 

(transparent).
4. Distribute the Lustre program 

on TTA.
5. Generate code, compile and 

run.

TTA

Simulink/Stateflow

Lustre/SCADE

Goal:
Automatic

as much as
possible!



22

Two papers

• “From Simulink to Lustre to TTA”:
– In “Languages, Compilers and Tools for 

Embedded Systems” (LCTES’03).

• “Translating Discrete-time Simulink to Lustre”:
– In EMSOFT’03.
– Talk tomorrow morning.



23

Translating Simulink into Lustre

• Goal: implement the controller(s).

• Assumption: the controller is designed 
using the Discrete-time Simulink library.

• Translation: easy, once you figure out 
the semantics of Simulink.



24

Simulink features I

Sampled
at 2 ms

Sampled
at 5 ms

Simulink rejects the model with the Gain.
It accepts the model if the Gain is removed !



25

Simulink features II

Simulink rejects the model with two constant blocks.
It accepts it if they are replaced by one block !



26

Translating Stateflow

• Things get worse…
– Entry, during, exit, …, actions.
– Semantics depends on graphical layout

• “top-to-bottom, left-to-right” rule for states,
• “clock-wise” rule for transitions.

– Backtracking in the middle of a transition.
– Non-terminating transitions…



27

Lesson learned

• Engineers (of today) tolerate this.

• Why?
– The design tool is like any other tool: you have to 

learn to use it.
– Power more important than sanity/simplicity.

• BUT: will gladly use anything that can help !
– Type checking, static analysis, verification, …



28

Prototype translator: Sim2Lus

Simulink Model
.mdl

XML data 
representation

.xml

Constrain check
Type Inference
Clock Inference

Lustre File
.lus

mdlParser

ToLustre package

code generation

error



29

Case studies

• Translated two case studies from Audi.
– A warning-filtering system:

• 6 levels, 20 subsystems, 113 total blocks.
• 800 lines of generated Lustre code.

– A steer-by-wire application:
• 6 levels, 18 subsystems, 157 total blocks.
• 387 lines of generated Lustre code.
• Upcoming demo for closing NEXT TTA review: 

Jan 2004.



30

A steer-by-wire application

The industrial demonstrator

Consists of:Consists of:

•• cameracamera

•• steering actuatorsteering actuator



31

A glance into Lustre
• A Lustre program models an I/O automaton:

• Semantics (synchrony hypothesis):

Memory
(state)

Step function
(transition)

inputs outputs

time



32

Why Lustre ?
• The translation does not solve the resource 

allocation problem, but:

• It offers formal semantics:
– verification, testing, thm proving possible

• It brings us closer to implementation:
– strong typing, type modularity, …
– DO178B-level A certified C code generator (by 

Esterel Technologies).



33

Distributing Lustre on TTA
• A resource allocation problem:

– computation is not free
– parallelism (communication) is not free

• First, a description problem:
– how to express available/required resources
– few languages support this today



34

Lustre extensions
• Code distribution

– available processors
– assignment of modules to processors

• Required computation resources
– WCETs of modules on certain processors

• Required communication resources
– Size of messages or network speed/overhead

• Other constraints
– Deadlines, “freshness” constraints, ...



35

Back to resource allocation...
• Two possibilities:
• “I know what I want”

– distribution, scheduling policy (e.g., priorities) are 
fixed by the designer, but do they work?

– verification problem
– classic theory often inadequate (c.f. TAXYS)

• “Help me”
– partly known, designer wants to try alternatives
– a blend of verification, and synthesis



36

Bus/Processor Scheduling

• Schedule tasks on processors and messages 
on the TTA bus.
– Assignment of tasks to processors assumed 

known.
– WCETs assumed known.
– TTA is a synchronous bus (global clock).

• NP-hard.

• Developed branch-and-bound algorithm.



37

A result of the scheduling tool

• 21 tasks on 3 processors:



38

Scheduling can become harder...

• Distribution of tasks unknown:
– where to assign tasks ?
– to compute or to communicate ?

• Environment not (multi-)periodic.

• Network not synchronous:
– e.g., find priorities for CAN messages, jitter, ...

• Adaptive to changes on-line:
– a task finishing earlier may violate freshness



39

Did we forget something ?

• Preservation:
– What happened to the semantics of the original 

Simulink model / Lustre program ?
– Most current (commercial) tools forget this.
– Back to simulation, testing, … 

• Glue code is often necessary.



40

Example
• Original Lustre program:

• A possible schedule:

• Glue code must remember previous value 
produced by A.

A Bpre

Cycle 1 Cycle 2

P1

P2
Bus

A

B

M

A

B

M

time

…



41

Tool chain



42

Conclusions
• End-to-end tool-chain:

– from design to implementation to execution.

• Need better models:
– simple, intuitive semantics

• Need analysis tools
• should not have to repeat analysis twice
• Need powerful resource allocation techniques

– that do not forget semantic preservation


